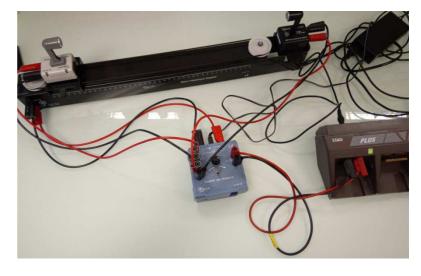
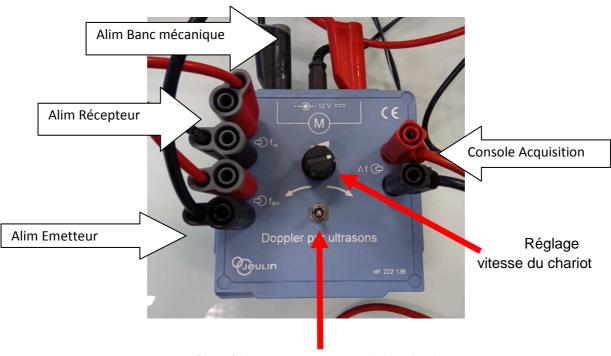
TP Banc mécanique Doppler

Essayons de déterminer la vitesse du chariot, avec le banc mécanique Doppler.

Pour cela nous allons utiliser la relation :


 $v=c \times \Delta f/f_{em}$

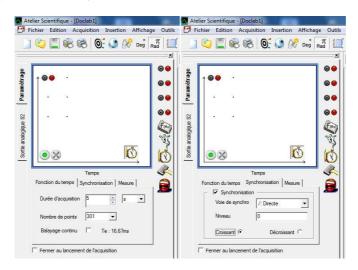
Avec : - v= vitesse du chariot


- c= vitesse du son dans l'air = 340m.s⁻¹
- Δf=1/T en Hz
- f_{em}= la fréquence d'émission des ultra-sons=40kHz

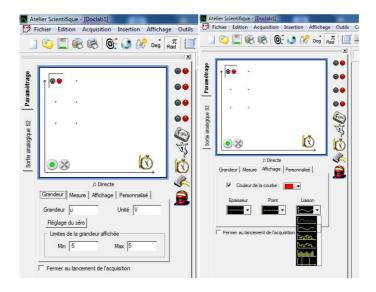
Utilisons le dispositif suivant :

- émetteur simple US
- récepteur US
- chariot mécanique Doppler
- alimentation Doppler
- console d'acquisition
- ordinateur avec AS
- fils

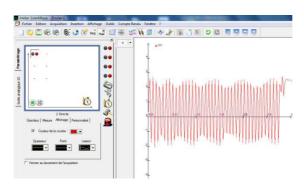
1: Branchements:



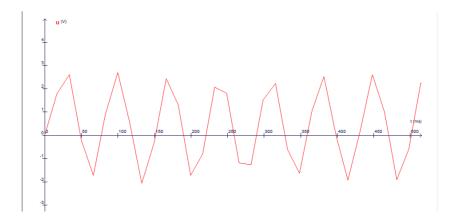
Pour faire avancer ou reculer le chariot


TP Banc mécanique Doppler

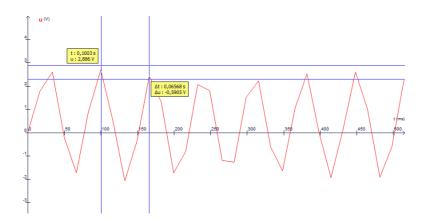
2: Paramètres d'acquisition:


Placer l'horloge sur l'axe des abscisses :
Durée d'acquisition 5s, Synchronisation Directe Niveau 0

2) Placer les voies sur l'axe des ordonnées : Grandeur : U de -5 à +5, Affichage : liaison


3) Lancer l'acquisition en cliquant sur le voyant vert. La courbe s'affiche dès que vous faites avancer, ou reculer, le chariot

TP Banc mécanique Doppler


4) Détermination de la vitesse du chariot

En cliquant sur l'axe des abscisses, dilater l'axe afin d'avoir un espace suffisant pour pouvoir déterminer Δt .

Avec l'outil Pointeur, cliquer sur un point de la courbe, et maintenir cliqué pour déterminer la période du signal.

Relever Δt .

Calculer Δf puis calculer v, la vitesse du chariot.

Vous pouvez vérifier cette valeur de v en lançant un chronomètre et en mesurant la distance parcourue par le chariot, sur la règle graduée du banc mécanique.

Recommencer l'acquisition en modifiant la vitesse du chariot.