Chimie

Exercice n°1

En chauffant fortement dans une tube à essai, un mélange formé de 0,14 mol d'oxyde de cuivre (II) $CuO_{(s)}$ et de 0,10 mol de carbone $C_{(s)}$, on observe un dégagement de dioxyde de carbone et la formation de cuivre solide.

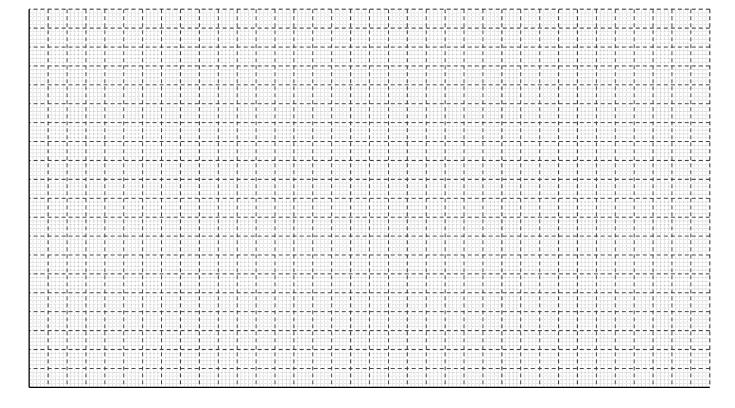
- 1. Ecrire l'équation de la réaction.
- 2. A l'aide du tableau d'avancement, déterminer la nature du réactif limitant et la composition, en quantité de matière du mélange dans l'état final.
- 3. Quelle masse de cuivre obtient-on?
- 4. Quel est le volume de dioxyde de carbone dégagé ?

Données:

volume molaire des gaz dans les conditions de mesure : Vm = 24,0 L.mol⁻¹.

Exercice n°2

Afin de doser un déboucheur de canalisation du commerce S_0 contenant de l'hydroxyde de sodium, on le dilue 80 fois ; on obtient une solution notée S_1 .


On introduit 10,0 mL de la solution S₁ dans un bécher ; on ajoute 200 mL d'eau distillée et on plonge l'électrode d'un conductimètre dans le mélange.

On effectue alors le titrage par une solution d'acide chlorhydrique de concentration 1,00.10-1 mol.L-1.

On obtient les résultats présentés dans le tableau :

<i>V_{H3O}</i> (mL)	0,00	2,00	4,00	6,00	8,00	10,0	23,0	14,0	16,0	18,0	20,0	22,0	24,0
σ (mS.cm ⁻¹)	1,34	1,21	1,08	0,960	0,840	0,730	0,630	0,680	0,930	1,23	1,55	1,84	2,13

- **1.** Ecrire l'équation de la réaction de titrage.
- **2.** Tracer, ci-dessous la courbe représentant la conductivité σ en fonction du volume d'ion oxonium versé. (Abscisses : 1 cm pour 2 mL ; Ordonnées : 4 cm pour 1 mS.cm⁻¹)
- 3. Justifier l'allure de la courbe.
- 4. Déterminer graphiquement le volume versé à l'équivalence.
- **5.** Calculer la quantité de matière d'ions oxonium qui ont été versé à l'équivalence ; en déduire celle des ions hydroxyde qui étaient présents au départ dans le bécher.
- 6. Quelle est la concentration molaire de la solution commerciale S₀?

